

SemEval 2025-Task 11: Bridging the Gap in Text-Based Emotion Detection

Shamsuddeen Hassan Muhammad*, Nedjma Ousidhoum*, Idris Abdulmumin, Seid Muhie Yimam, Jan Philip Wahle, Terry Ruas, Meriem Beloucif, Christine De Kock, Tadesse Destaw Belay, Ibrahim Said Ahmad, Nirmal Surange, Daniela Teodorescu, David Ifeoluwa Adelani, Alham Fikri Aji, Felermino Ali, Vladimir Araujo, Abinew Ali Ayele, Oana Ignat, Alexander Panchenko, Yi Zhou, Saif M. Mohammad

https://github.com/emotion-analysis-project/SemEval2025-Task11

Motivation

 Human communication is deeply emotional

- Multilingual and cultural challenges
 - Emotional expression varies across languages, cultures, and contexts (perceived subjectively).
- Our task

Text-based emotion detection across cultures and language

29/07/2025

SemEval 2025 Task 11: Text-Based Emotion Detection

Focuses on **perceived emotions**

Predict... what emotion most people will think the speaker may be feeling, given a sentence or a short text snippet uttered by the speaker.

30/07/2025

Task Setup

Track A (Multi-label Emotion Detection)

Classes: joy, sadness, fear, anger, surprise, and disgust

Track B (Emotion Intensity Detection)

Classes: 0, 1, 2, or 3

Track C (Cross-lingual Emotion Detection)

Classes: joy, sadness, fear, anger, surprise, and disgust

Evaluation Metrics

- 1. Average macro F1 score
- 2. Pearson correlation coefficient

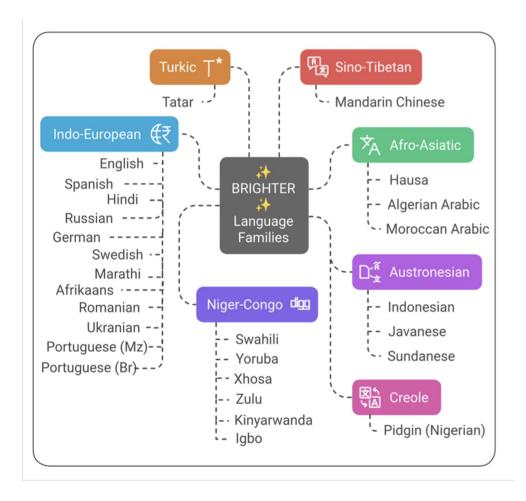
Baseline

- 1. Majority class
- 2. Fine-tuned RoBERTa

29/07/2025

Languages

32



BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages Evaluating the Capabilities of Large Language Models for Multi-label Emotion Understanding

Dataset Example

32

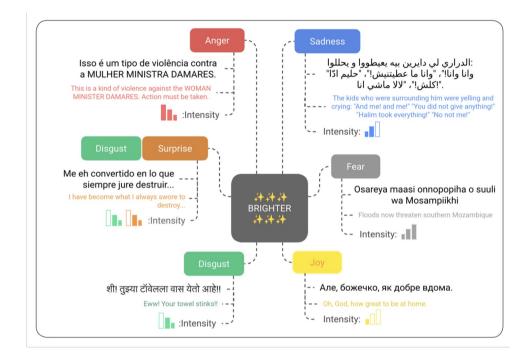
Emotion labels

Anger, Disgust, Sadness, Joy, Fear, Surprise, Neutral

12

Emotion intensity

- $0 \rightarrow no emotion$
- $1 \rightarrow low intensity$
- $2 \rightarrow moderate intensity$
- $3 \rightarrow high\ intensity$



BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages Evaluating the Capabilities of Large Language Models for Multi-label Emotion Understanding

Dataset Quality

Inter-Annotator Agreement (IAA) vs Annotation Reliability

Split-Half Class Match Percentage (SHCMP)

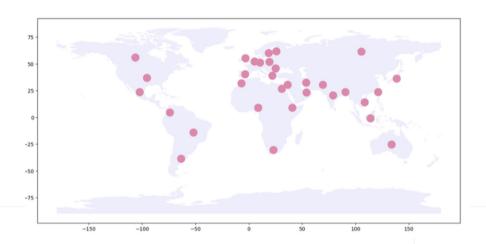
extends the concept **of Split-Half Reliability** (SHR), traditionally used for continuous scores to discrete categories (i.e., intensity scores).

 SHMP scores vary from 60% to more than 90%, indicating that our datasets are of high quality.

Tasks Summary

Our task was the most popular competition on Codabench in 2024

Codabench Newsletter 2024



700+

Registered Participants

362

Submitted system during evaluation phase

93

Submitted system description paper

220

Task A: Multi-label Emotion Detection

96

Task B: Emotion Intensity Detection

46

Task C: Cross-lingual Emotion Detection

Top Systems

Team

Languages

Task A

Multi-Label Emotion Detection

Pi

Ping An Life Insurance Company of China

20 out of 28 languages

Task B

Emotion Intensity Detection

Pi

Ping An Life Insurance Company of China

10 out of 11 languages

Task C

Cross-lingual Emotion Detection

DeepWave

Tomorrow Advancing Life (China)

25 out of 32 languages

Best System (Tracks A and B)

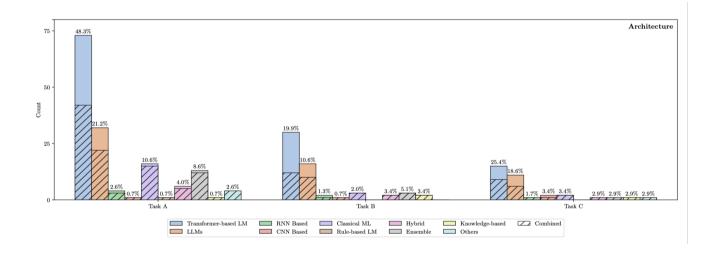
Track A & B

PAI at SemEval-2025 Task 11: A Large Language Model Ensemble Strategy for Text-Based Emotion Detection

Ping An Life Insurance Company of China

Approach

CSECU-Learners ranked at the top in **Amharic** by fine-tuning language-specific transformers for Amharic with a classification layer and multi-sample dropout.



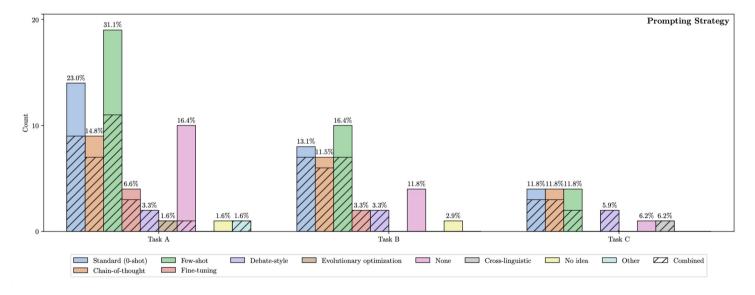
Best System (Track C)

Track C

PAI at SemEval-2025 Task 11: A Large Language Model Ensemble Strategy for Text-Based Emotion Detection

Ping An Life Insurance Company of China

- Supervised fine-tuning (SFT) Google Gemma 2 large language model
- data augmentation, Chain-of-Thought (CoT) prompting, and model ensembling techniques.



Takeaways: Popular Methods

- Most top-performing teams favored fine-tuning and prompting LLMs
- Full fine-tuning and parameter-efficient fine-tuning were the most commonly used strategies to enhance performance
- For prompting, **few-shot**, **zero-shot**, and **chain-of-thought** prompting were the most frequently used techniques.
- Traditional transformer-based models, particularly XLM-RoBERTa, mBERT, DeBERTa

Takeaways: Best Performing Systems

- LLMs achieve strong overall performance; however, their effectiveness is heavily dependent on prompt engineering techniques and wording.
- Performance varies significantly by language.
 - Better in high-resource languages such as English and Russian
 - Dropped on low-resource languages such as Swahili and Emakhuwa
- Most teams did not incorporate additional datasets to enhance performance, as fewshot and zero-shot approaches proved highly effective.

SemEval 2025 Task 11: Text-Based Emotion Detection

Thanks to all participants

Thanks to the SemEval Chairs

Shamsuddeen Hassan Muhammad*, Nedjma Ousidhoum*, Idris Abdulmumin, Seid Muhie Yimam, Jan Philip Wahle, Terry Ruas, Meriem Beloucif, Christine De Kock, Tadesse Destaw, Belay, Ibrahim Said Ahmad, Nirmal Surange, Daniela Teodorescu, David Ifeoluwa Adelani, Alham Fikri Aji, Felermino Ali, Vladimir Araujo, Abinew Ali Ayele, Oana Ignat, Alexander Panchenko, Yi Zhou, Saif M. Mohammad

https://github.com/emotion-analysis-project/SemEval2025-Task11